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Ah&act The title compounds underwent enantioselective comphuion via hydrogen bond formation 
in CDQ, and X-ray analysis of the co-crys!al comprised of these compounds indicated dual l+HO 
banding as the mode of complexatim. Binding geomelry was examined by PM3 calculaticm 

Determination of tbe binding geometry of a molecular complex consisting of a selector and selectand is a 

matter of fun&mental importance in the chemistry of molecular recogniti0n.l We recently introduced a 

new concept of “complementary twist” into the mode of dual hydrogen banding to generate 

ensntiosekctivity.2 In an artificial system based on this concept, the relative orientation of each binding 

site of selectoiand selectand for dual hydrogen bonding showed a twist whose rotation sense reflecied the 

absolute configuration. A chiral selector in such a system interacts preferentially with a selectand 

enantiomer which exhibits complementary twist by maximizing hydrogen bonding and minimizing untoward 

steric interaction, This relation can be likened to that between an interior and external screw both having 

the same sense of spiral groove. Our initial work in this series demonstrated the molecular design of (I?$)- 

4,4’-bi[S-((Z)-AGopropylimino)-13dioxolane] (1) as a twisted acceptor with high cnantioselectivity toward 

a 1,2-diol.3 In the present study, the binding geometry of (RR)-1 with a misted donor is disclosed by the 

X-ray crystal SbllCNTt of a 1:l complex of (R,R)-1 and (S)-l,l’-bi-2-naphthol Q). The relevance of the 

static crystal structure to enantioselective complexation of these species in solution is discussed in reference 

to the results of NMR study and PM3 calculations. 
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After a warm solution of a 1.21 mixture of (R,R)-1 and (S)-2 in toluene (0.43 M in (R,R)-1) had stood at 

room temperature, single crystals of a 1:l complex of these species were observed to have grown 

spontaneously. By X-ray analysi$ of the co-crystal, the molecular structure of the complex was determined 

and dual N-*-HO bonding was unambiguously shown m be the mode of complexation, as indicated in Figure 

1. A van der Waals surface of the complex in Figure 1 (center) clearly demonstrates close contact between 
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isopropyl methyIs of (R,.R)-1 and aromatic rings of (Q-2. This close contact indicates that maximum 

approach between (RR)*1 and (S)-2 is achieved through dual hydrogen bonding. This complex possesses a 

pstudo-C2 axis passing1 through both centers of the bond between two naphthyl rings of (Q-2 and that 

between two iminodioxo$ne rings of (RR)-1. Each componem of this compIex adopts an energetically 

favored conformation. !The hmion angle betwezzn the two daphthyl rings of (S)-2 is sufficiently large to 

minim& stcric interact@ between these rings. 5 The S-configuration is represented by a clockwise twist 

between two aromatic risgs each containing a bydmxyl as a hydrogen bond donor+ (RR}-1 provides an and 

relationship between twc) C-C bonds each consisting of an imino and &symmetric carbon 80 that maximum 

separation between the two bulky isopropyl substituents is attained.6 In the conformer of (R&l, the 
I 

relative orientation of tht two iminodioxolane rings containing binding sites displays a propeller-like twist 

with counter&&wise r@ation, as expected in the stage of our molecular design. Complexation through 

dual interactions betwe+ the twisted acceptor sites of (R&-l and donor sites of (S)-2 cults in twisting 

between these molecule& about the pseudo-C2 axis as shown in Figun? 1 (right). Such twisting serves to 

maximize hydrogen bon&g by eluding s&c interaction in the process of complexation, and chzmu%erizcs 

the mode of compIexatioti based on the concept of “complementary twist”. 

HCI-WC14 = 22A 

* one of the isopmpyl subslituents of (R&)-l 

-2. Selected smtllral uers: NM% = 2.846 (4) A, Nl- 

X&C4 = 162.3 (2)=, C%-cu- 

e.ratedbyChcm3Dl’hs. based 

with O-2 as viewed alomg the 

Interactions of (R,R)4 toward (R)- and (S)-2 in solution could be easily monitored by *H NMR 

spectroscopy. Downfield shift noted for hydroxyl protons of 2 in a CDC13 solution containing {R,R)-1 

indicated the forma&ion ofl intermolecular hydrogen bonding and consequently, a titration experiment could 

be carried out to &terming thermodynamic parameters of the complexation,n? Analysis of a set of data using 

a least-squares method in&ated the association constant KRR_S = 9.9 + 0.3 M-1 for the (R,.R)-l-(S)-2 system 

and &R-R = 9.4 + 0.2 M-0 for the [R,R)-l-(R)-2 system at 298 K. 7 The magnitude of enantioselection at 

this temperature was on12 slight but became greater with decrease in temperature. Thus, definitive S- 

selectivity of &RR)-1 towed 2 was confumed with KRR_J = 91.2+1.3M-*andKRR_R=59.2* 0.3M-tat 

263 K. Temperature dcp&Ience of the association constants was assessed from a van? Hoff plot which 

indicatedinAif=- 9.9 Kc&no1 and AS = -28.6 C.U. for the (RR)-l-0-2 system and 1w = -8.2 Kcal/mol and 

AS = -23.3 e.u. for the (RR)-I-(R)-2 system. 7.8 The Ieve of A?f in both systems was quite consistent with 
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the formation of dual hydrogen bonds, but it should be noted that the binding entbalpy of (RP)-1 with (Q-2 

wlls g~~atcr by 1.7 KcaUtnol than that of (RR)-1 with (F&2. 

Resonance of the isopropyl methyl protons of free (RR)-1 appeared at 1.128 and 1.131 ppm as a pair of 

doublets at 263 K. The shift difference between these signals was enlarged on complcxation with 2. The 
observed peak splitting was ascribable to restriction of rotation about a single bond between the imino 

nitrogen and isopropyl methine carbon due to access of the 2 molecule through dual N+*+HO bonds. 

Limiting chemical shifts9 of these protons in the complex at 263 K WCIB 1.17 and 1.43 ppm for dae (R,R)l- 

(a-2 system, and 0 ,$4 and 1.14 ppm for the (RR)-%(R)-2 system. Resonance of the isopropyl methines 

shii downfield by 0.15 ppm when the complex had formed throughout with (S)-2. In contra& an 

upfield shift of 0.14 ppm occurred for the (R,R)-l-(R)-2 system. These shifts may possibly have been due to 

anisotropic effect based on the ring current of 2. It should be noted that the arrangement of N-isopropyl 

SubBfituenU of (R,R)-1 and naPhthy1 rings of (Q-2 in the X-ray crystal structure of the complex made it 

possible for the naphthyl rings to &shield some of the isopropyl protons. The downfield shift observed for 

the (R,R)-l-(s)_2 system is thu8 consisant with the binding geometry of the crystal stxucture. 

All geomeaical parameters of the complex in the solid 8tate were optimized by semiempirical PM3 

calculationl~~l* to eliminate the packing effects in the crystal lattice. The calculation was converged 

through slight modification of stmcture. For example, hydrogtn bond distances (N.--H) wete shortened to 

1.83 A and 1.86 A and the close contact observed in the crystal structux was preserved The calculated 

heat of formation of the optimized (R,R)-l-(S)-2 complex was -149.04 KcaVmol. Intzraction energy of 

-10.08 Kcztl/mol was obtained by subtracting the energy of unrelaxed shvcturesl2 of isolated components 

&om the energy of the complex. 

The results of above computation indicated the geometrical arrangement of the X-ray cxystal sbucture of 

the complex to be muciblt without the packing effects. The NMR study showed the relev~~ of the 

complex motif in the crystal structure to the enantiosele&ve complexalion in CDC13. WC thus conchi& that 

the X-ray structure of the co-crystal comprised of (RR)-1 and IS)-2 is equivalent to the core structure in 

dynamic complexation involving molecular motion such as twisting and rocking between these components 

in solution. 

The Present data confirm dual hydrogen bonding proposed as our working hypothesis for enantioselective 

complexation. The binding geometry demonstrated here should serve as a basis for simulating molecular 
recognition effectEd by a selector-selectand system that applies complcmtntarity of twists13 in dual 

interactions. 
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